Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila.
نویسندگان
چکیده
In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin.
منابع مشابه
Drosophila Immunity: A Large-Scale In Vivo RNAi Screen Identifies Five Serine Proteases Required for Toll Activation
Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bact...
متن کاملCutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bac...
متن کاملDual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors
The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that coo...
متن کاملDual activation of the Drosophila toll pathway by two pattern recognition receptors.
The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demon...
متن کاملDetermination of the Resistance Pattern of Prevalent Aerobic Bacterial Infections of Diabetic Foot Ulcer
Background and Objective: Diabetes mellitus is one of the main problems in health systems in the world. Diabetic Foot infections (DFI) is one of the main complications and the most cause of non-traumatic lower limb amputation .This study aimed to determine the prevalence of bacteria involved in DFI and their antibiotic resistance in patients with DFI diagnosis. Patients and Metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 168 4 شماره
صفحات -
تاریخ انتشار 2002